Reactive material

A Physics-Aware Deep Learning Model for Shear Band Formation Around Collapsing Pores in Shocked Reactive Materials

Abstract Modeling shock-to-detonation phenomena in energetic materials (EMs) requires capturing complex physical processes such as strong shocks, rapid changes in microstructural morphology, and nonlinear dynamics of chemical reaction fronts. These processes participate in energy localization at hotspots, which initiate chemical energy release leading to detonation. This study addresses the formation of hotspots in crystalline EMs subjected to weak-to-moderate shock loading, which, despite its critical relevance to the safe storage and handling of EMs, remains underexplored compared to the well-studied strong shock conditions.