

# Physics-Aware Convolutional Neural Networks for Modeling Energetic Material in the Weak Shock Regime

Xinlun Cheng<sup>1</sup> (Presenter)

Yen Nguyen,<sup>2</sup> Joseph Choi,<sup>1</sup> Pradeep Kumar Seshadri,<sup>2</sup> Mayank Verma,<sup>2</sup> H.S. Udaykumar,<sup>2</sup> Stephen Baek<sup>1,3</sup>

- <sup>1</sup>School of Data Science, University of Virginia
- <sup>2</sup> Department of Mechanical Engineering, University of Iowa
- <sup>3</sup> Department of Mechanical and Aerospace Engineering, University of Virginia













#### EM Reactive Dynamics in Different Shock Regimes

Strong Shock



- Weak-to-Modest Shock
- Localized region of high temperature: hotspot
- Nano-second scale
- Continuum simulation: a few CPU hours
- Frequently simulated & modeled

- Multitude of physical processes
- Pico-second scale
- MD simulation: millions of CPU hours
- Continuum simulation: a few CPU hours<sup>1,2</sup>
- Understudied

<sup>2</sup> Nguyen et al. 2024 "Continuum models for meso-scale simulations of HMX (1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocane) guided by molecular dynamics: Pore collapse, shear bands, and hotspot temperature." *Journal of applied physics* 136, no. 11 (2024).

<sup>&</sup>lt;sup>1</sup>Herrin et al. 2024 "Pore collapse, shear bands, and hotspots using atomistics-consistent continuum models for RDX (1, 3, 5-trinitro-1, 3, 5-triazinane): Comparison with molecular dynamics calculations." *Journal of applied physics* 136, no. 13 (2024).

#### EM Reactive Dynamics in Different Shock Regimes

Strong Shock

Weak-to-Modest Shock

#### Can we go faster?

Entire simulation in seconds, without requiring millions of training samples

#### Yes, with the help of physics-informed machine learning!

- Localized region of high temperature: hotspot
- Nano-second scale
- Continuum simulation: a few CPU hours
- Frequently simulated & modeled

- Multitude of physical processes
- Pico-second scale
- MD simulation: millions of CPU hours
- Continuum simulation: a few CPU hours
- Understudied

#### PARCv2

- Integrating ADR equations into neural network architecture
  - Inductive design philosophy
  - Numerically calculated advection & diffusion
  - Merged with learnt reaction terms
  - Predicts temporal derivatives
  - Numerical integrated to get the next step
- Proven track record in modeling extreme dynamics
  - Dynamics of localized region of high temperature<sup>1</sup>
  - Supersonic cylinder flow<sup>2</sup>
  - Achieved state-of-the-art accuracy with <100 training simulations</li>
  - Inference in seconds on a GPU workstation



Image credit: Cheng et al. 2024<sup>2</sup>

PARCv2 Paper



GitHub Repo



<sup>&</sup>lt;sup>1</sup> Nguyen et al. 2024 "PARCv2: Physics-aware recurrent convolutional neural networks for spatiotemporal dynamics modeling." In *Proceedings of the 41st International Conference on Machine Learning*, pp. 37649-37666.

<sup>&</sup>lt;sup>2</sup>Cheng et al. 2024 "Physics-aware recurrent convolutional neural networks for modeling multiphase compressible flows." *International Journal of Multiphase Flow* 177 (2024): 104877.

## On a Strong Shock Regime...

- State-of-the-art accuracy
- Inference in seconds



\*For more details, please visit **Poster 105** this evening.

## On Weak-to-Modest Shock Regimes

- PARCv2 consistently achieves smallest prediction error
  - Across wide range of impact velocities
  - On average a 3x decrease compared to FNO
  - More than 10x decrease compared to neural ODE
- PARCv2 has superior accuracy and ability to generalize



### In-distribution Rollout Sequences





- Comparison with FNO
  - Sharper prediction
  - Much more accurate reaction dynamics
  - More detailed shear bands
- Comparison with Resnet Neural ODE
  - Explicit calculated advection/diffusion gives large performance boost

## Out-of-distribution Rollout Sequences



#### Limitations



Struggles with predicting finer details

- Blurry edge of the shear bands
- Missing weaker shear bands



Deteriorated accuracy in extrapolation, particularly in low velocity cases

Cheng et al. in prep

## Improving PARCv2

- Perceptual loss<sup>1</sup>
  - Loss term on high frequency features extracted with a pretrained image classifier
  - Stronger penalization on finer details
- Multi-resolution<sup>2,3</sup>
  - Traditional CNN: hierarchical, deeper layer larger scale
  - MR-Net: parallel, exchange information between different scales

<sup>&</sup>lt;sup>3</sup> Paz et al. 2022. "Multiresolution neural networks for imaging." In *2022 35th SIBGRAPI conference* on graphics, patterns and images (SIBGRAPI), vol. 1, pp. 174-179. IEEE, 2022



Selected VGG16 relu1 2 Features

<sup>&</sup>lt;sup>1</sup> Johnson et al. 2016. "Perceptual losses for real-time style transfer and super-resolution" in Computer Vision–ECCV 2016 Proceedings, Part II 14 pp. 694–711. 2016

<sup>&</sup>lt;sup>2</sup>Ke et al. 2017. "Multigrid neural architectures" In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6665-6673. 2017

#### Conclusion

- PARCv2 significantly speeds up simulations of EM reactive dynamics
  - From a few CPU hours on HPC to seconds on a workstation
- PARCv2 achieves state-of-the-art accuracy on modeling extreme dynamics
  - Across a wide range of problems and initial conditions
  - Training + validation of ~100 simulations
  - Better in-dist and extrapolation accuracy than the most popular PIML models
- Future improvements of PARCv2
  - More sophisticated loss function for capturing fine details even better
  - Multi-resolution architecture to exchange information between different scales



## Thank you!

Contact: xc7ts@virginia.edu





This work was supported by the U.S. Army Research Office (ARO) Energetics Basic Research Center (EBRC) program under Grant No. W911NF-22-2-0164 and partially by the U.S. National Science Foundation (NSF) DMREF Program under Grant No. 2203580.