Physics-Aware Convolutional Neural Networks for Modelling Energetic Material in the Strong Shock Regime

¹School of Data Science, University of Virginia

²Department of Mechanical Engineering, University of Iowa

³Department of Mechanical and Aerospace Engineering, University of Virginia

Introduction

- Sensitivity-performance balance
- Governed by molecular structure and microstructure
- Structure-Property-Performance (S-P-P) linkages in EM
- Traditional DNS takes days on HPC
- Can we do it in seconds on a workstation?
- Without requiring millions of training samples

PARCv₂

- Physics-aware Recurrent Convolutional Neural Network (PARCv2)
- Building the structure of ADR equations into the architecture
 - Numerically calculated advection & diffusion
 - Merged with learnt reaction terms
 - Predicts temporal derivatives
 - Numerical integrated to get the next step

State-of-the-art accuracy in many canonical flow problems

- Comparison model -- Fourier neural operator (FNO)
 - Learning the operators mapping between Fourier space
- Comparison model -- PARC
 - No ADR structure, black box NN approximation of governing equations

Results

Prediction error:

MODEL	ENERGETIC MATERIALS			
	$RMSE_T(K)$	$RMSE_P(GPa)$		
PARC (NUMERICAL INT.)	249.99	1.491		
PARC (DATA-DRIVEN INT.)	306.99	4.111		
FNO	248.39	2.685		
PARCv2 (This Study)	229.52	1.634		

Hotspot characteristics:

MODEL	ENERGETIC MATERIALS			
	$rac{arepsilon_{T^{hs}}}{(K)}$	$rac{arepsilon_{A^{hs}}}{(\mu m^2)}$	$rac{arepsilon_{\dot{T}^{hs}}}{(K/ns)}$	$rac{arepsilon_{\dot{A}^{hs}}}{(\mu m^2/ns)}$
DNS PARC (NUMERICAL INT.) PARC (DATA-DRIVEN INT.) FNO PARCV2 (THIS STUDY)	- 409.58 972.38 622.60 149.27	0.0253 0.0728 0.0431 0.0060	269.09 839.64 425.91 228.98	0.0248 0.0681 0.0527 0.0094

PARCv2 achieves best accuracy over the entire domain and in regions of scientific interest

Future Works

- Consistent overprediction of hotspot temperature
- Modeling more complex problems
 - Multi-pore microstructure
 - Single model multiple material
 - Different shock strength

Acknowledgement

ARO EBRC Program (Grant No. W911NF-22-2-0164)
National Science Foundation (Grant No. DMREF-2203580)
Department of Energy LDRD Program (Contract No. DE-AC52-07NA27344)